Stress analysis of steam turbine rotor using Fluid-Structure Interaction simulation

Katanda Fajar Fauzi, Moch. Agus Choiron, Agung Sugeng Widodo, Yudy Surya Irawan, Djarot B. Darmadi, Anindito Purnowidodo

Abstract


Steam Power Plant generates electricity due to a device that extracts heat energy from steam and converts it into mechanical work on the rotor. Turbines operate at high pressures and temperatures which may cause potential failures in the rotor. This study aims to determine the stress distribution on the turbine rotor to predict potential failures. The turbine studied is a 15 MW steam turbine with a rotation speed of 3000 rpm, inlet steam pressure of 2 MPa, and inlet steam temperature of 471.2 OC. The study focused on the Curtis stage. Fluid-Structure Interaction (FSI) simulation was performed to determine the interaction between the fluid and the turbine rotor. Computational Fluid Dynamic (CFD) was performed to determine the temperature and pressure hitting the rotor. The temperature and pressure distribution data from the CFD simulation is transferred to the structural simulation as the load received by the rotor. In addition to fluid loads, the rotor experiences centrifugal loads due to rotation and gravity loads. The largest stress received by the turbine rotor is at the front of the rotor with a stress of 347.39 MPa.

Keywords


Steam Turbine; Fluid-Structure Interaction (FSI); Computational Fluid Dynamic (CFD); Structural Simulation; Stress Distribution

Full Text:

PDF

References


Hetharia, M., & Lewerissa, Y. J. (2018). Analisis Energi pada Perencanaan Pembangkit Listrik Tenaga Uap (PLTU) dengan Cycle Tempo. Jurnal Voering, 3(1), 1–8.

Toth, A., & Bobok, E. (2017). Geothermal Power Generation. In Flow and Heat Transfer in Geothermal Systems (pp. 243–273). Elsevier. https://doi.org/10.1016/B978-0-12-800277-3.00011-6.

Banaszkiewicz, M. (2018). Numerical investigations of crack initiation in impulse steam turbine rotors subject to thermo-mechanical fatigue. Applied Thermal Engineering, 138, 761–773. https://doi.org/10.1016/j.applthermaleng.2018.04.099.

Xiao, Y. Q., Liu, Z. Y., Zhu, W., & Peng, X. M. (2021). Reliability assessment and lifetime prediction of TBCs on gas turbine blades considering thermal mismatch and interfacial oxidation. Surface and Coatings Technology, 423. https://doi.org/10.1016/j.surfcoat.2021.127572.

Ferreira, C., & Gonçalves, G. (2022). Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. Journal of Manufacturing Systems, 63, 550–562. https://doi.org/10.1016/j.jmsy.2022.05.010.

Fathyunes, L., & Mohtadi-Bonab, M. A. (2023). A Review on the Corrosion and Fatigue Failure of Gas Turbines. Metals, 13(4). https://doi.org/10.3390/met13040701.

Katinić, M., Kozak, D., Gelo, I., & Damjanović, D. (2019). Corrosion fatigue failure of steam turbine moving blades: A case study. Engineering Failure Analysis, 106. https://doi.org/10.1016/j.engfailanal.2019.08.002.

Marzec, Ł., Buliński, Z., & Krysiński, T. (2021). Fluid structure interaction analysis of the operating Savonius wind turbine. Renewable Energy, 164, 272–284. https://doi.org/10.1016/j.renene.2020.08.145.

Ubulom, I. (2021). Influence of fluid-structure interaction modelling on the stress and fatigue life evaluation of a gas turbine blade. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235(5), 1019–1038. https://doi.org/10.1177/0957650920967559.

Cai, L., He, Y., Wang, S., Li, Y., & Li, F. (2021). Thermal-fluid-solid coupling analysis on the temperature and thermal stress field of a nickel-base superalloy turbine blade. Materials, 14(12). https://doi.org/10.3390/ma14123315.

Campobasso, M. S., & Giles, M. B. (2006). Stabilizing linear harmonic flow solvers for turbomachinery aeroelasicity with complex iterative algorithms. AIAA Journal, 44(5), 1048–1059. https://doi.org/10.2514/1.17069.

Eltayesh, A., Hanna, M. B., Castellani, F., Huzayyin, A. S., El-Batsh, H. M., Burlando, M., & Becchetti, M. (2019). Effect of wind tunnel blockage on the performance of a horizontal axis wind turbine with different blade number. Energies, 12(10). https://doi.org/10.3390/en12101988.

Wang, L., Quant, R., & Kolios, A. (2016). Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. Journal of Wind Engineering and Industrial Aerodynamics, 158, 11–25. https://doi.org/10.1016/j.jweia.2016.09.006.

Arocena, V. M., & Danao, L. A. M. (2023). Improving the Modeling of Pressure Pulsation and Cavitation Prediction in a Double-Volute Double-Suction Pump Using Mosaic Meshing Technology. Processes, 11(3). https://doi.org/10.3390/pr11030660.

Karkoulias, D. G., Tzoganis, E. D., Panagiotopoulos, A. G., Acheimastos, S. G. D., & Margaris, D. P. (2022). Computational Fluid Dynamics Study of Wing in Air Flow and Air–Solid Flow Using Three Different Meshing Techniques and Comparison with Experimental Results in Wind Tunnel. Computation, 10(3). https://doi.org/10.3390/computation10030034.

Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A, 4(7), 1510–1520. https://doi.org/10.1063/1.858424.

Szabó, B., & Babuška, I. (2021). Finite Element Analysis: Method, Verification and Validation (2nd ed.). Wiley.




DOI: https://doi.org/10.53889/gmpics.v3.419

Article Metrics

Abstract view : 297 times
PDF - 183 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Katanda Fajar Fauzi, Moch. Agus Choiron, Agung Sugeng Widodo, Yudy Surya Irawan, Djarot B. Darmadi, Anindito Purnowidodo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Flag Counter

View My Stats